DRAFT TANZANIA STANDARD

(Draft for comments only)

Optical fibre cables – Part 1-23: Generic specification –
Basic optical cable test procedures – Cable element test methods

TANZANIA BUREAU OF STANDARDS

© TBS 2019
First Edition 2019
1 National Foreword

This draft Tanzania Standard is being prepared by the Telecommunications and Information Technology Technical Committee, under the supervision of the Electrotechnical divisional standards committee (EDC)

This draft Tanzania Standard is an adoption of the International Standard IEC 60794-1-23:2017 Optical fibre cables – Part 1-23: Generic specification – Basic optical cable test procedures – Cable element test methods. Which has been prepared by the International Electrotechnical Commission.

2 Terminology and conventions

Some terminologies and certain conventions are not identical with those used in Tanzania standards; attention is drawn especially to the following:

1) The comma has been used as a decimal marker for metric dimensions. In Tanzania Standards, it is current practice to use “full point” on the baseline as the decimal marker.

2) Where the words “International Standard(s)” appear, referring to this standard they should read “Tanzania Standard(s)”.
Optical fibre cables –
Part 1-23: Generic specification – Basic optical cable test procedures –
Cable element test methods
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scope</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Normative references</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Terms and definitions</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>General requirements</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Method G1: Bend test for optical cable elements</td>
<td>8</td>
</tr>
<tr>
<td>5.1</td>
<td>Object</td>
<td>8</td>
</tr>
<tr>
<td>5.2</td>
<td>Sample</td>
<td>8</td>
</tr>
<tr>
<td>5.3</td>
<td>Apparatus</td>
<td>8</td>
</tr>
<tr>
<td>5.4</td>
<td>Procedure</td>
<td>8</td>
</tr>
<tr>
<td>5.5</td>
<td>Requirements</td>
<td>8</td>
</tr>
<tr>
<td>5.6</td>
<td>Details to be specified</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Method G2: Ribbon dimensions and geometry – Visual method</td>
<td>9</td>
</tr>
<tr>
<td>6.1</td>
<td>Object</td>
<td>9</td>
</tr>
<tr>
<td>6.2</td>
<td>Sample</td>
<td>9</td>
</tr>
<tr>
<td>6.3</td>
<td>Apparatus</td>
<td>9</td>
</tr>
<tr>
<td>6.4</td>
<td>Procedure</td>
<td>9</td>
</tr>
<tr>
<td>6.4.1</td>
<td>General</td>
<td>9</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Method 1</td>
<td>9</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Method 2</td>
<td>9</td>
</tr>
<tr>
<td>6.5</td>
<td>Requirements</td>
<td>9</td>
</tr>
<tr>
<td>6.6</td>
<td>Details to be specified</td>
<td>10</td>
</tr>
<tr>
<td>6.7</td>
<td>Definitions of ribbon dimensions and geometry</td>
<td>10</td>
</tr>
<tr>
<td>6.7.1</td>
<td>General</td>
<td>10</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Width and height</td>
<td>10</td>
</tr>
<tr>
<td>6.7.3</td>
<td>Basis line</td>
<td>10</td>
</tr>
<tr>
<td>6.7.4</td>
<td>Fibre alignment</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Method G3: Ribbon dimensions – Aperture gauge</td>
<td>11</td>
</tr>
<tr>
<td>7.1</td>
<td>Object</td>
<td>11</td>
</tr>
<tr>
<td>7.2</td>
<td>Sample</td>
<td>11</td>
</tr>
<tr>
<td>7.3</td>
<td>Apparatus</td>
<td>11</td>
</tr>
<tr>
<td>7.4</td>
<td>Procedure</td>
<td>12</td>
</tr>
<tr>
<td>7.5</td>
<td>Requirement</td>
<td>12</td>
</tr>
<tr>
<td>7.6</td>
<td>Details to be specified</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>Method G4: Ribbon dimensions – Dial gauge</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>Method G5: Ribbon tear (separability)</td>
<td>12</td>
</tr>
<tr>
<td>9.1</td>
<td>Object</td>
<td>12</td>
</tr>
<tr>
<td>9.2</td>
<td>Sample</td>
<td>12</td>
</tr>
<tr>
<td>9.3</td>
<td>Apparatus</td>
<td>13</td>
</tr>
<tr>
<td>9.4</td>
<td>Procedure</td>
<td>13</td>
</tr>
<tr>
<td>9.5</td>
<td>Requirements</td>
<td>14</td>
</tr>
<tr>
<td>9.6</td>
<td>Details to be specified</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>Method G6: Ribbon torsion</td>
<td>14</td>
</tr>
<tr>
<td>10.1</td>
<td>Object</td>
<td>14</td>
</tr>
<tr>
<td>10.2</td>
<td>Sample</td>
<td>14</td>
</tr>
</tbody>
</table>
10.3 Apparatus ... 14
10.4 Procedure ... 15
10.5 Requirements .. 15
10.6 Details to be specified .. 15

11 Method G7: Tube kinking ... 16
11.1 Object .. 16
11.2 Sample ... 16
11.3 Apparatus ... 16
11.4 Procedure ... 17
11.5 Requirements .. 17
11.6 Details to be specified .. 17

12 Method G8: Ribbon residual twist test 18
12.1 Object .. 18
12.2 Sample ... 18
12.3 Apparatus ... 18
12.4 Procedure ... 18
12.5 Requirements .. 19
12.6 Details to be specified .. 19

13 Method G9: Bleeding and evaporation 19
13.1 Object .. 19
13.2 Sample ... 19
13.3 Apparatus ... 19
13.4 Procedure ... 20
13.5 Requirements .. 20
13.6 Details to be specified .. 20

14 Method G10A: Stripping force stability of cabled optical fibres ... 21
14.1 Object .. 21
14.2 Sample ... 21
14.2.1 Sample length ... 21
14.2.2 Sample preparation ... 21
14.3 Apparatus ... 21
14.4 Procedure ... 21
14.5 Requirements .. 21
14.6 Details to be specified .. 21

15 Method G10B: Strippability of optical fibre ribbons 22
15.1 Object .. 22
15.2 Sample ... 22
15.3 Apparatus ... 22
15.3.1 General ... 22
15.3.2 Stripping tool ... 22
15.3.3 Motor and slide (if used) 23
15.4 Positioning and holding equipment 23
15.5 Alcohol wipe .. 23
15.6 Procedure ... 23
15.7 Requirements .. 24
15.8 Details to be specified .. 24

16 Method G10C: Strippability of buffered optical fibres 24
16.1 Object .. 24
16.2 Sample ... 24
16.3 Apparatus .. 24
16.4 Procedure ... 24
16.5 Requirements .. 25
16.6 Details to be specified ... 25

17 Method G11A: Tensile strength and elongation of buffer tubes and micro tubes at break
... 25
17.1 Object ... 25
17.2 Sample .. 25
17.2.1 General ... 25
17.2.2 Preparation and conditioning of test pieces ... 25
17.2.3 Determination of cross-sectional area .. 28
17.2.4 Ageing treatment ... 29
17.3 Apparatus .. 29
17.4 Procedure ... 30
17.5 Requirements .. 31

18 Method G11B: Elongation of buffer tubes and micro tubes at low temperature 31
18.1 Object ... 31
18.2 Sample .. 31
18.2.1 General ... 31
18.2.2 Preparation of test pieces ... 31
18.3 Apparatus .. 32
18.4 Procedure ... 32
18.5 Requirements .. 33
18.6 Details to be specified ... 33

Bibliography .. 34

Figure 1 – Cross-sectional drawing illustrating fibre ribbon geometry 10
Figure 2 – Aperture gauge ... 11
Figure 3 – Sample preparation for ribbon separability test .. 13
Figure 4 – Separability procedure .. 14
Figure 5 – Torsion test .. 15
Figure 6 – Tube kinking test .. 16
Figure 7 – Bleeding and evaporation test set-up .. 20
Figure 8 – Dumb-bell test piece .. 27
Figure 9 – Small dumb-bell test piece .. 28
Figure 10 – Punch end showing groove ... 28
Figure 11 – Test pieces cut by grooved punch ... 28
Figure 12 – Machine for preparing test pieces .. 30

Table 1 – Examples of test apparatus dimensions for tube kinking 17
Table 2 – Condition of stripped samples .. 23
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

DISCLAIMER

This Redline version is not an official Standard and is intended to provide the user with an indication of what changes have been made to the previous version. Only the IEC International Standard provided in this package is to be considered the official Standard.

This Redline version provides you with a quick and easy way to compare all the changes between this standard and its previous edition. A vertical bar appears in the margin wherever a change has been made. Additions are in green text, deletions are in strikethrough red text.
International Standard IEC 60794-1-23 has been prepared by subcommittee 86A: Fibres and cables, of IEC technical committee 86: Fibre optics.

This second edition cancels and replaces the first edition published in 2012. It constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) addition of a new test method G9: Bleeding and evaporation (formerly known as method E15 in IEC 60794-1-21:2015);
b) addition of a new test method G10A: Stripping force stability of cabled optical fibres (formerly known as method E5A in IEC 60794-1-21:2015);
c) addition of a new test method G10B: Strippability of optical fibre ribbons (formerly known as method E5B in IEC 60794-1-21:2015);
d) addition of a new test method G10C: Strippability of buffered optical fibres (formerly known as method E5C in IEC 60794-1-21:2015);
e) addition of a new test method G11A: Tensile strength and elongation of buffer tubes (included in IEC 60811-501);
f) addition of a new test method G11B: Elongation of buffer tubes at low temperature (included in IEC 60811-505);
g) clarification of the sample preparation procedure in method G5: Ribbon tear (separability);

The text of this International Standard is based on the following documents:

<table>
<thead>
<tr>
<th>CDV</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>86A/1912/CDV</td>
<td>86A/1945/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 60794 series, published under the general title *Optical fibre cables*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
OPTICAL FIBRE CABLES

Part 1-23: Generic specification – Basic optical cable test procedures – Cable element test methods

1 Scope and object

This part of IEC 60794 describes test procedures to be used in establishing uniform requirements for the geometrical, material, mechanical, environmental properties of optical fibre cable elements.

This document applies to optical fibre cables for use with telecommunication equipment and devices employing similar techniques, and to cables having a combination of both optical fibres and electrical conductors.

Throughout the document, the wording "optical cable" may can also include optical fibre units, microduct fibre units, etc.

NOTE The environmental testing of optical fibre ribbon would be valuable for some applications. Useful information about suitable test methods can be found in the optical fibre standards IEC 60793-1-50, IEC 60793-1-51, IEC 60793-1-52, and IEC 60793-1-53.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60794-1-2, Optical fibre cables – Part 1-2: Generic specification – Basic optical cable test procedures – General guidance

IEC 60793-1-40, Optical fibres – Part 1-40: Measurement methods and test procedures – Attenuation measurement methods

IEC 60793-1-46, Optical fibres – Part 1-46: Measurement methods and test procedures – Monitoring of changes in optical transmittance
3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at http://www.iso.org/obp

4 General requirements

IEC 60794-1-2 is the reference guide to test methods of all types. It shall be considered for general requirements and definitions.

5 Method G1: Bend test for optical cable elements

5.1 Object

The purpose of this test is to characterize cable elements for splicing purposes by determining the attenuation increase of an optical cable element (fibre, ribbon, core tube, breakout unit, etc.) element when bent within a splice closure or similar device.

5.2 Sample

The length of the sample of optical cable element shall be sufficient to carry out the testing specified.

5.3 Apparatus

The apparatus consists of

a) a mandrel having a smooth surface with diameter as stated in the detail specification, and
b) an attenuation measuring apparatus for the determination of attenuation change (see according to the test methods of IEC 60793-1-40 and IEC 60793-1-46).

5.4 Procedure

The element to be tested shall be loosely wound on the mandrel at minimal tension; the number of turns shall be stated in the detail specification.

In order to measure the attenuation increase caused by bending, allowance should be made for the intrinsic attenuation of the fibre.

5.5 Requirements

Any increase in attenuation shall comply with the limits shown in the detail specification.

5.6 Details to be specified

The detail specification shall include the following:

a) optical test wavelength;
b) diameter of the mandrel;
Optical fibre cables –
Part 1-23: Generic specification – Basic optical cable test procedures – Cable element test methods

Câbles à fibres optiques –
Partie 1-23: Spécification générale – Procédures fondamentales d’essai des câbles optiques – Méthodes d’essai des éléments de câble
CONTENTS

FOREWORD .. 5

1 Scope .. 7

2 Normative references .. 7

3 Terms and definitions .. 7

4 General requirements .. 8

5 Method G1: Bend test for optical cable elements .. 8

5.1 Object .. 8

5.2 Sample ... 8

5.3 Apparatus ... 8

5.4 Procedure .. 8

5.5 Requirements .. 8

5.6 Details to be specified ... 8

6 Method G2: Ribbon dimensions and geometry – Visual method 9

6.1 Object .. 9

6.2 Sample .. 9

6.3 Apparatus ... 9

6.4 Procedure ... 9

6.4.1 General .. 9

6.4.2 Method 1 ... 9

6.4.3 Method 2 ... 9

6.5 Requirements .. 9

6.6 Details to be specified ... 9

6.7 Definitions of ribbon dimensions and geometry .. 10

6.7.1 General ... 10

6.7.2 Width and height .. 10

6.7.3 Basis line ... 10

6.7.4 Fibre alignment .. 10

7 Method G3: Ribbon dimensions – Aperture gauge ... 11

7.1 Object .. 11

7.2 Sample .. 11

7.3 Apparatus .. 11

7.4 Procedure ... 11

7.5 Requirement ... 11

7.6 Details to be specified ... 11

8 Method G4: Ribbon dimensions – Dial gauge (obsoleted method) 12

9 Method G5: Ribbon tear (separability) .. 12

9.1 Object .. 12

9.2 Sample .. 12

9.3 Apparatus .. 13

9.4 Procedure ... 13

9.5 Requirements ... 14

9.6 Details to be specified ... 14

10 Method G6: Ribbon torsion ... 14

10.1 Object .. 14

10.2 Sample ... 14
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3</td>
<td>Apparatus</td>
<td>14</td>
</tr>
<tr>
<td>10.4</td>
<td>Procedure</td>
<td>15</td>
</tr>
<tr>
<td>10.5</td>
<td>Requirements</td>
<td>15</td>
</tr>
<tr>
<td>10.6</td>
<td>Details to be specified</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>Method G7: Tube kinking</td>
<td>16</td>
</tr>
<tr>
<td>11.1</td>
<td>Object</td>
<td>16</td>
</tr>
<tr>
<td>11.2</td>
<td>Sample</td>
<td>16</td>
</tr>
<tr>
<td>11.3</td>
<td>Apparatus</td>
<td>16</td>
</tr>
<tr>
<td>11.4</td>
<td>Procedure</td>
<td>17</td>
</tr>
<tr>
<td>11.5</td>
<td>Requirements</td>
<td>17</td>
</tr>
<tr>
<td>11.6</td>
<td>Details to be specified</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>Method G8: Ribbon residual twist test</td>
<td>18</td>
</tr>
<tr>
<td>12.1</td>
<td>Object</td>
<td>18</td>
</tr>
<tr>
<td>12.2</td>
<td>Sample</td>
<td>18</td>
</tr>
<tr>
<td>12.3</td>
<td>Apparatus</td>
<td>18</td>
</tr>
<tr>
<td>12.4</td>
<td>Procedure</td>
<td>18</td>
</tr>
<tr>
<td>12.5</td>
<td>Requirements</td>
<td>18</td>
</tr>
<tr>
<td>12.6</td>
<td>Details to be specified</td>
<td>19</td>
</tr>
<tr>
<td>13</td>
<td>Method G9: Bleeding and evaporation</td>
<td>19</td>
</tr>
<tr>
<td>13.1</td>
<td>Object</td>
<td>19</td>
</tr>
<tr>
<td>13.2</td>
<td>Sample</td>
<td>19</td>
</tr>
<tr>
<td>13.3</td>
<td>Apparatus</td>
<td>19</td>
</tr>
<tr>
<td>13.4</td>
<td>Procedure</td>
<td>20</td>
</tr>
<tr>
<td>13.5</td>
<td>Requirements</td>
<td>20</td>
</tr>
<tr>
<td>13.6</td>
<td>Details to be specified</td>
<td>21</td>
</tr>
<tr>
<td>14</td>
<td>Method G10A: Stripping force stability of cabled optical fibres</td>
<td>21</td>
</tr>
<tr>
<td>14.1</td>
<td>Object</td>
<td>21</td>
</tr>
<tr>
<td>14.2</td>
<td>Sample</td>
<td>21</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Sample length</td>
<td>21</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Sample preparation</td>
<td>21</td>
</tr>
<tr>
<td>14.3</td>
<td>Apparatus</td>
<td>21</td>
</tr>
<tr>
<td>14.4</td>
<td>Procedure</td>
<td>21</td>
</tr>
<tr>
<td>14.5</td>
<td>Requirements</td>
<td>21</td>
</tr>
<tr>
<td>14.6</td>
<td>Details to be specified</td>
<td>22</td>
</tr>
<tr>
<td>15</td>
<td>Method G10B: Strippability of optical fibre ribbons</td>
<td>22</td>
</tr>
<tr>
<td>15.1</td>
<td>Object</td>
<td>22</td>
</tr>
<tr>
<td>15.2</td>
<td>Sample</td>
<td>22</td>
</tr>
<tr>
<td>15.3</td>
<td>Apparatus</td>
<td>22</td>
</tr>
<tr>
<td>15.3.1</td>
<td>General</td>
<td>22</td>
</tr>
<tr>
<td>15.3.2</td>
<td>Stripping tool</td>
<td>22</td>
</tr>
<tr>
<td>15.3.3</td>
<td>Motor and slide (if used)</td>
<td>23</td>
</tr>
<tr>
<td>15.4</td>
<td>Positioning and holding equipment</td>
<td>23</td>
</tr>
<tr>
<td>15.5</td>
<td>Alcohol wipe</td>
<td>23</td>
</tr>
<tr>
<td>15.6</td>
<td>Procedure</td>
<td>23</td>
</tr>
<tr>
<td>15.7</td>
<td>Requirements</td>
<td>24</td>
</tr>
<tr>
<td>15.8</td>
<td>Details to be specified</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>Method G10C: Strippability of buffered optical fibres</td>
<td>24</td>
</tr>
<tr>
<td>16.1</td>
<td>Object</td>
<td>24</td>
</tr>
</tbody>
</table>
17 Method G11A: Tensile strength and elongation of buffer tubes and micro tubes at break ... 25

17.1 Object .. 25

17.2 Sample .. 25

17.2.1 General .. 25

17.2.2 Preparation and conditioning of test pieces 25

17.2.3 Determination of cross-sectional area 28

17.2.4 Ageing treatment ... 29

17.3 Apparatus ... 29

17.4 Procedure ... 30

17.5 Requirements ... 31

18 Method G11B: Elongation of buffer tubes and micro tubes at low temperature 31

18.1 Object .. 31

18.2 Sample .. 31

18.2.1 General .. 31

18.2.2 Preparation of test pieces .. 31

18.3 Apparatus ... 32

18.4 Procedure ... 32

18.5 Requirements ... 33

18.6 Details to be specified .. 33

Bibliography ... 34

Figure 1 – Cross-sectional drawing illustrating fibre ribbon geometry .. 10

Figure 2 – Aperture gauge .. 11

Figure 3 – Sample preparation for ribbon separability test ... 13

Figure 4 – Separability procedure .. 14

Figure 5 – Torsion test ... 15

Figure 6 – Tube kinking test .. 16

Figure 7 – Bleeding and evaporation test set-up ... 20

Figure 8 – Dumb-bell test piece ... 27

Figure 9 – Small dumb-bell test piece ... 28

Figure 10 – Punch end showing groove ... 28

Figure 11 – Test pieces cut by grooved punch ... 28

Figure 12 – Machine for preparing test pieces ... 30

Table 1 – Examples of test apparatus dimensions for tube kinking .. 17

Table 2 – Condition of stripped samples .. 23
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees: any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60794-1-23 has been prepared by subcommittee 86A: Fibres and cables, of IEC technical committee 86: Fibre optics.

This second edition cancels and replaces the first edition published in 2012. It constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) addition of a new test method G9: Bleeding and evaporation (formerly known as method E15 in IEC 60794-1-21:2015);

b) addition of a new test method G10A: Stripping force stability of cabled optical fibres (formerly known as method E5A in IEC 60794-1-21:2015);

c) addition of a new test method G10B: Strippability of optical fibre ribbons (formerly known as method E5B in IEC 60794-1-21:2015);

d) addition of a new test method G10C: Strippability of buffered optical fibres (formerly known as method E5C in IEC 60794-1-21:2015);
e) addition of a new test method G11A: Tensile strength and elongation of buffer tubes (included in IEC 60811-501);
f) addition of a new test method G11B: Elongation of buffer tubes at low temperature (included in IEC 60811-505);
g) clarification of the sample preparation procedure in method G5: Ribbon tear (separability);

The text of this International Standard is based on the following documents:

<table>
<thead>
<tr>
<th>CDV</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>86A/1912/CDV</td>
<td>86A/1945/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 60794 series, published under the general title *Optical fibre cables*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under ”http://webstore.iec.ch” in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The ‘colour inside’ logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
1 Scope

This part of IEC 60794 describes test procedures to be used in establishing uniform requirements for the geometrical, material, mechanical, environmental properties of optical fibre cable elements.

This document applies to optical fibre cables for use with telecommunication equipment and devices employing similar techniques, and to cables having a combination of both optical fibres and electrical conductors.

Throughout the document, the wording "optical cable" can also include optical fibre units, microduct fibre units, etc.

NOTE The environmental testing of optical fibre ribbon would be valuable for some applications. Useful information about suitable test methods can be found in the optical fibre standards IEC 60793-1-50, IEC 60793-1-51, IEC 60793-1-52, and IEC 60793-1-53.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60794-1-2, Optical fibre cables – Part 1-2: Generic specification – Basic optical cable test procedures – General guidance

IEC 60793-1-40, Optical fibres – Part 1-40: Attenuation measurement methods

IEC 60793-1-46, Optical fibres – Part 1-46: Measurement methods and test procedures – Monitoring of changes in optical transmittance

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses: