DRAFT TANZANIA STANDARD

(Draft for comments only)

Information technology – Generic cabling for customer premises
Part 3: Industrial premises
1 National Foreword

This draft Tanzania Standard is being prepared by the Telecommunications and Information Technology Technical Committee, under the supervision of the Electrotechnical divisional standards committee (EDC)

This draft Tanzania Standard is an adoption of the International Standard ISO/IEC11801-3:2017 Information technology – Generic cabling for customer premises Part 3: Industrial premises, which has been prepared by the International Electrotechnical Commission.

2 Terminology and conventions

Some terminologies and certain conventions are not identical with those used in Tanzania standards; attention is drawn especially to the following:

1) The comma has been used as a decimal marker for metric dimensions. In Tanzania Standards, it is current practice to use “full point” on the baseline as the decimal marker.

2) Where the words “International Standard(s)” appear, referring to this standard they should read “Tanzania Standard(s)”.

8.2 Balanced cabling .. 23
8.2.1 General .. 23
8.2.2 Intermediate cabling subsystem .. 24
8.2.3 Floor cabling subsystem .. 26
8.2.4 Campus and building backbone cabling subsystem ... 28
8.3 Optical fibre cabling .. 28
9 Cable requirements .. 28
9.1 General ... 28
9.2 Balanced cables .. 28
9.3 Optical fibre cables .. 29
10 Connecting hardware requirements .. 29
10.1 General requirements .. 29
10.2 Connecting hardware for balanced cabling .. 29
10.2.1 General requirements .. 29
10.2.2 Electrical, mechanical and environmental performance .. 29
10.3 Connecting hardware for optical fibre cabling ... 30
10.3.1 General requirements ... 30
10.3.2 Optical requirements ... 30
11 Cords ... 30
11.1 Jumpers ... 30
11.2 Balanced cords .. 30
11.2.1 General .. 30
11.2.2 Additional requirements for apparatus attachment cords .. 30
11.3 Optical fibre cords ... 30
Annex A (normative) Industrial cabling system .. 31
A.1 General ... 31
A.2 Industrial intermediate cabling subsystem .. 31
Annex B (normative) Additional reference implementations .. 33
B.1 General ... 33
B.2 Channel configurations ... 33
B.2.1 General .. 33
B.2.2 Channels with no connections ... 33
B.2.3 Channels with inter-connections .. 34
B.2.4 End-to-end link (E2E link) ... 35
B.3 Channels using balanced cabling bulkhead connections .. 36
Annex C (informative) Other implementations .. 38
C.1 General ... 38
C.2 Channels using balanced cabling bulkhead connections with additional connections 38

Bibliography ... 41

Figure 1 – Relationships between the generic cabling documents produced by
ISO/IEC JTC 1/SC 25 .. 7
Figure 2 – Relationships between the ISO/IEC and IEC cabling documents that apply
to industrial premises ... 8
Figure 3 – Configuration of apparatus-based functional elements within industrial 14
Figure 4 – Structure of generic cabling for industrial environment 14
Figure 5 – Centralized structure of generic cabling for industrial premises .. 16
Figure 6 – Hierarchical structure of generic cabling for industrial premises .. 17
Figure 7 – Inter-relationship of functional elements in an installation with diversity for protection against failure (CPs optional between IDs and TOs) .. 17
Figure 8 – Accommodation of functional elements (CPs optional between IDs and TOs) 18
Figure 9 – Equipment and test interfaces ... 19
Figure 10 – Transmission performance of a channel ... 21
Figure 11 – Example of a system showing the location of cabling interfaces and extent of associated channels ... 22
Figure 12 – Intermediate cabling models ... 25
Figure 13 – Floor cabling model .. 27
Figure A.1 – Industrial cabling system supporting several AIs via an IID ... 31
Figure A.2 – Combined structure of generic and industrial cabling system using an IID 32
Figure B.1 – Channel configurations without intermediate connections ... 34
Figure B.2 – Channel configurations with inter-connections ... 35
Figure B.3 – Channel configurations with bulkhead connections ... 36
Figure C.1 – Channel configurations with bulkhead and additional connections 39

Table 1 – Maximum channel lengths ... 20
Table 2 – Length assumptions used in the mathematical modelling of balanced intermediate cabling ... 25
Table 3 – Intermediate link length equations ... 26
Table 4 – Floor link length equations ... 28
Table B.1 – Channel length equations for balanced cabling with inter-connections 35
Table B.2 – Channel length equations with bulkhead connections ... 37
Table C.1 – Channel equations with bulkhead and additional connections .. 40
INFORMATION TECHNOLOGY –
GENERIC CABLELING FOR CUSTOMER PREMISES

Part 3: Industrial premises

FOREWORD

1) ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

2) The formal decisions or agreements of IEC and ISO on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees and ISO member bodies.

3) IEC, ISO and ISO/IEC publications have the form of recommendations for international use and are accepted by IEC National Committees and ISO member bodies in that sense. While all reasonable efforts are made to ensure that the technical content of IEC, ISO and ISO/IEC publications is accurate, IEC or ISO cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees and ISO member bodies undertake to apply IEC, ISO and ISO/IEC publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any ISO, IEC or ISO/IEC publication and the corresponding national or regional publication should be clearly indicated in the latter.

5) ISO and IEC do not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. ISO or IEC are not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or ISO or its directors, employees, servants or agents including individual experts and members of their technical committees and IEC National Committees or ISO member bodies for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication of, use of, or reliance upon, this ISO/IEC publication or any other IEC, ISO or ISO/IEC publications.

8) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this ISO/IEC publication may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 11801-3 was prepared by subcommittee 25: Interconnection of information technology equipment, of ISO/IEC joint technical committee 1: Information technology.

This edition includes the following significant technical changes with respect to the previous edition:

a) standard re-structured to contain only those requirements that are specific for generic cabling systems installed in industrial premises;
b) support of critical process control, monitoring and automation (PCMA) services between automation islands by adding new Annex A (normative) “Industrial cabling system”;
c) support of specific requirements for industrial cabling the end-to-end link (E2E) has been introduced and delivers additional channel configuration covered in Annex B (normative);
d) silica optical fibre cabling has been removed from this International Standard.
ISO/IEC 11801-3 is to be read in conjunction with ISO/IEC 11801-1.

This International Standard has been approved by vote of the member bodies, and the voting results may be obtained from the address given on the second title page.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the ISO/IEC 11801 series, published under the general title Information technology – Generic cabling for customer premises, can be found on the IEC website.

The contents of the corrigendum of April 2018 have been included in this copy.
INTRODUCTION

The importance of cabling infrastructure is similar to that of other fundamental utilities such as water and energy supply and interruptions to the services provided over that infrastructure can have a serious impact. A lack of design foresight, the use of inappropriate components, incorrect installation, poor administration or inadequate support can threaten quality of service and have commercial consequence for all types of users.

This document specifies generic cabling, which is critical for providing robust services to the automation islands in industrial premises, or industrial spaces within other types of building.

Additionally, those premises can include

- office spaces for which generic cabling is specified in ISO/IEC 11801-2,
- data centre spaces for which generic cabling is specified in ISO/IEC 11801-5.

Generic cabling for distributed building services in industrial spaces is specified in ISO/IEC 11801-6, which addresses all of the above premises and spaces within them.

This document has taken into account the correlation between all parts of the ISO/IEC 11801 series and the IEC 61918 and IEC 61784-5 series.

Figure 1 shows the schematic and contextual relationships between the standards relating to information technology cabling produced by ISO/IEC JTC 1/SC 25, namely the ISO/IEC 11801 series of standards for generic cabling design, standards for the installation, operation and administration of generic cabling and for testing of installed generic cabling.
The generic cabling specified by this document provides users with

a) an application independent system capable of supporting a wide range of applications in a range of installation and operating environments,

b) a flexible scheme such that modifications are both easy and economical,

c) a multi-vendor supply chain within an open market for cabling components.

In addition, this document provides

d) relevant industry professionals with guidance allowing the accommodation of cabling before specific requirements are known, i.e. in the initial planning either for construction or refurbishment and for further deployment as the requirements of areas are defined,

e) industry and standardization bodies with a cabling system which supports current products and provides a basis for future product development and applications standardization.

Applications addressed in this document include those developed by the technical committees of IEC (including the subcommittees of ISO/IEC JTC 1), including critical industrial process control and monitoring applications and study groups of ITU-T.

As a result, this document

1) specifies a structure for generic cabling supporting a wide variety of applications,

2) adopts balanced cabling channel and link Classes D, E, EA, F and FA, specified in ISO/IEC 11801-1,

3) adopts component requirements, specified in ISO/IEC 11801-1, and specifies cabling implementations that ensure performance of permanent links and of channels that meet or exceed the requirements of a specified group (e.g. Class) of applications.

Figure 2 shows the relationship between all the documents (the generic cabling standards produced by ISO/IEC JTC 1/SC 25 and the application-specific standards produced by IEC SC 65C) that apply to industrial premises.

Figure 2 – Relationships between the ISO/IEC and IEC cabling documents that apply to industrial premises
It is anticipated that the generic cabling system meeting the minimum requirements of this document will have a life expectancy consistent with other infrastructures within industrial premises.

This document has taken into account requirements specified in application standards listed in ISO/IEC 11801-1:2017, Annex E. It refers to International Standards for components and test methods whenever appropriate International Standards are available.
INFORMATION TECHNOLOGY –
GENERIC CABLING FOR CUSTOMER PREMISES

Part 3: Industrial premises

1 Scope

This part of ISO/IEC 11801 specifies generic cabling for use within industrial premises, or industrial areas within other types of premises, which can comprise single or multiple buildings on a campus. It covers balanced cabling and optical fibre cabling.

This document is optimized for premises in which the maximum distance over which telecommunications services can be distributed is 10 000 m. The principles of this document can be applied to larger installations.

Cabling defined by this document supports a wide range of services, including automation, process control, and monitoring applications. That can also incorporate the supply of power.

This document specifies directly or via reference to ISO/IEC 11801
a) the structure and minimum configuration for generic cabling within industrial premises,
b) the interfaces at the telecommunications outlet (TO),
c) the performance requirements for cabling links and channels,
d) the implementation requirements and options,
e) the performance requirements for cabling components,
f) the conformance requirements and verification procedures.

The cabling providing critical automation, process control and monitoring applications within the automation islands is not addressed by this document. Information for this application-specific cabling is provided in the IEC 61784-5 series (design) and in IEC 61918 (installation).

Safety (electrical safety and protection, fire, etc.) and electromagnetic compatibility (EMC) requirements are outside the scope of this document, and are covered by other standards and by regulations. However, information given by this document can be of assistance.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61918, Industrial communication networks – Installation of communication networks in industrial premises

IEC 61754-20, Fibre optic interconnecting devices and passive components – Fibre optic connector interfaces – Part 20: Type LC connector family

IEC 61784 -5 (all parts), Industrial communication networks – Profiles – Part 5: Installation of fieldbuses – Installation profiles for CPF

3 Terms, definitions, abbreviated terms and symbols

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 11801-1 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at http://www.iso.org/obp

3.1.1 apparatus
one or more pieces of equipment having specific and defined overall functions within industrial premises served by one or more network interfaces

3.1.2 apparatus attachment cord
cord used to connect a telecommunications outlet to a network interface

3.1.3 automation island
premises and areas where a combination of systems that control, monitor and protect process(es) of a plant are installed

3.1.4 automation outlet
fixed connecting hardware which provides an interface to the automation island (AI)

3.1.5 bulkhead
wall or barrier which maintains the ingress and climatic environmental classifications applicable on either side

3.1.6 equipment room
room dedicated to housing distributors and application-specific equipment

3.1.7 floor cable
cable connecting the floor distributor to the intermediate distributor

3.1.8 floor distributor
distributor used to make connections between the floor cable, other cabling subsystems and active equipment

3.1.9 intermediate cable
cable connecting the intermediate distributor to the telecommunications outlet