DRAFT TANZANIA STANDARD

(Draft for comments only)

Terrestrial photovoltaic (PV) modules - Design qualification and type approval - Part 1-3: Special requirements for testing of thin-film amorphous silicon based photovoltaic (PV)
0 National Foreword

This draft Tanzania Standard has been prepared by the Renewable Energy Technical Committee, under the supervision of the Electrotechnical Divisional Standards Committee (EDC)

This draft Tanzania Standard is an adoption of the International Standard 61215-1-3:2016 Terrestrial photovoltaic (PV) modules - Design qualification and type approval - Part 1-3: Special requirements for testing of thin-film amorphous silicon based photovoltaic (PV) which has been prepared by the International Electrotechnical Commission.

1 Terminology and conventions

Some terminologies and certain conventions are not identical with those used in Tanzania standards; attention is drawn especially to the following:

1) The comma has been used as a decimal marker for metric dimensions. In Tanzania Standards, it is current practice to use “full point” on the baseline as the decimal marker.

2) Where the words “International Standard(s)” appear, referring to this standard they should read “Tanzania Standard(s)”.
INTERNATIONAL STANDARD

Terrestrial photovoltaic (PV) modules – Design qualification and type approval – Part 1-3: Special requirements for testing of thin-film amorphous silicon based photovoltaic (PV) modules

INTERNATIONALE

Modules photovoltaïques (PV) pour applications terrestres – Qualification de la conception et homologation –

Partie 1-3: Exigences particulières d'essai des modules photovoltaïques (PV) au silicium amorphe à couches minces

INTERNATIONAL

ELECTROTECHNICAL

COMMISSION

ELECTROTECHNIQUE

INTERNATIONALE
CONTENTS

FOREWORD ... 3

1 Scope and object .. 5

2 Normative references ... 5

3 Terms and definitions .. 5

4 Test samples ... 5

5 Marking and documentation ... 5

6 Testing .. 5

7 Pass criteria ... 6

8 Major visual defects .. 6

9 Report .. 6

10 Modifications .. 6

11 Test flow and procedures .. 6

11.1 Visual inspection (MQT 01) ... 6

11.2 Maximum power determination (MQT 02) ... 6

11.3 Insulation test (MQT 03) .. 6

11.4 Measurement of temperature coefficients (MQT 04) .. 6

11.5 Measurement of nominal module operating temperature (NMOT) (MQT 05) 6

11.6 Performance at STC (MQT 06.1) and NMOT (MQT 06.2) .. 6

11.7 Performance at low irradiance (MQT 07) ... 6

11.8 Outdoor exposure test (MQT 08) .. 7

11.9 Hot-spot endurance test (MQT 09) .. 7

11.9.1 Purpose .. 7

11.9.2 Hot-spot effect ... 7

11.9.3 Classification of cell interconnection .. 7

11.9.4 Apparatus .. 7
11.9.5 Procedure .. 7

11.9.6 Final measurements ... 7

11.9.7 Requirements .. 7

11.10 UV preconditioning test (MQT 10) ... 7

11.11 Thermal cycling test (MQT 11) ... 7

11.12 Humidity-freeze test (MQT 12) ... 7

11.13 Damp heat test (MQT 13) ... 7

11.14 Robustness of terminations test (MQT 14) .. 8

11.15 Wet leakage current test (MQT 15) ... 8

11.16 Static mechanical load test (MQT 16) ... 8

11.17 Hail test (MQT 17) ... 8

11.18 Bypass diode testing (MQT 18) ... 8

11.19 Stabilization (MQT 19) ... 8

11.19.2 Criterion definition for stabilization ... 8

11.19.3 Light induced stabilization procedure .. 8

11.19.4 Other stabilization procedures ... 8

11.19.5 Initial stabilization (MQT 19.1) .. 9

11.19.6 Final stabilization (MQT 19.2) .. 9
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61215-1-3 has been prepared by IEC technical committee 82:

Solar photovoltaic energy systems

This edition cancels and replaces the second edition of IEC 61646, issued in 2008, and constitutes a technical revision.

This edition constitutes a technical revision for thin-film a-Si/µc-Si based terrestrial photovoltaic modules.

This standard is to be read in conjunction with IEC 61215-1:2016 and IEC 61215-2:2016.
The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>82/1183/FDIS</td>
<td>82/1207/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 61215 series, published under the general title *Terrestrial photovoltaic (PV) modules – Design qualification and type approval*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under “http://webstore.iec.ch” in the data related to the specific document. At this date, the document will be

- reconformed,
- withdrawn,
- replaced by a revised edition, or
- amended
TERRESTRIAL PHOTOVOLTAIC (PV) MODULES –
DESIGN QUALIFICATION AND TYPE APPROVAL –

Part 1-3: Special requirements for testing of thin-film amorphous silicon based photovoltaic (PV) modules

1 Scope and object

This part of IEC 61215 lays down IEC requirements for the design qualification and type approval of terrestrial photovoltaic modules suitable for long-term operation in general open-air climates, as defined in IEC 60721-2-1. This document is intended to apply to all thin-film amorphous silicon (a-Si; a-Si/µc-Si) based terrestrial flat plate modules. As such, it addresses special requirements for testing of this technology supplementing IEC 61215-1:2016 and IEC 61215-2:2016 requirements for testing.

This document does not apply to modules used with concentrated sunlight although it may be utilized for low concentrator modules (1 to 3 suns). For low concentration modules, all tests are performed using the current, voltage and power levels expected at the design concentration.

The object of this test sequence is to determine the electrical and thermal characteristics of the module and to show, as far as possible within reasonable constraints of cost and time, that the module is capable of withstanding prolonged exposure in climates described in the scope. The actual lifetime expectancy of modules so qualified will depend on their design, their environment and the conditions under which they are operated.

This document defines PV technology dependent modifications to the testing procedures and requirements per IEC 61215-1:2016 and IEC 61215-2:2016.

2 Normative references

The normative references of IEC 61215-1:2016 and IEC 61215-2:2016 are applicable without modifications.

3 Terms and definitions

This clause of IEC 61215-1:2016 is applicable without modifications.

4 Test samples

This clause of IEC 61215-1:2016 is applicable without modifications.

5 Marking and documentation

This clause of IEC 61215-1:2016 is applicable without modifications.

6 Testing

This clause of IEC 61215-1:2016 is applicable with the following modifications: