
**Title**: Corrosion of metals and alloys — Basic terms and definitions  

**Scope**: This International Standard defines terms relating to corrosion that are widely used in modern science and technology. In addition, some definitions are supplemented with short explanations.


**Title**: Metals and alloys — Atmospheric corrosion testing — General requirements  

**Scope**: This International Standard establishes general requirements for stationary corrosion testing of metals and metallic and other inorganic coatings under atmospheric conditions carried out in the open air or under shelters. It can also be applied for testing of complex specimens and assemblies of metallic materials.


**Title**: Industrial safety helmets  

**Scope**: This International Standard specifies physical and performance requirements, methods of test and marking requirements for industrial safety helmets.

4. **TBS/ MEDC 4 (6453) P3 ISO 5774: 2016**  

**Title**: Plastics hoses — Textile-reinforced types for compressed-air applications — Specification.  

**Scope**: This International Standard specifies the requirements for four types of flexible thermoplastic hose, textile reinforced, for compressed-air applications in the temperature range from −10 °C to +60 °C.  

The four types are classified as light service for a maximum working pressure of 7 bar at 23 °C and 4,5 bar at 60 °C, medium service for a maximum working pressure of 10 bar at 23 °C and 6,5 bar at 60 °C, heavy service for a maximum working pressure of 16 bar at 23 °C and 11 bar at 60 °C, and heavy service for use in mining for a maximum working pressure of 25 bar at 23 °C and 13 bar at 60 °C.


**Title**: Plastics hose - General-purpose collapsible water hose, textile-reinforced — Specification.  

**Scope**: This International Standard specifies the requirements for four types of textile-reinforced thermoplastics collapsible water hoses for general applications for use in the temperature range of −10 °C to 55 °C. Such hoses are classified into four types, as follows:  

— low pressure, designed for a maximum working pressure of up to 0,4 MPa (4,0 bar) at 23 °C and up to 0,2 MPa (2,0 bar) at 55 °C;  

— medium pressure, for a maximum working pressure of up to 0,7 MPa (7,0 bar) at 23 °C and up to 0,36 MPa (3,6 bar) at 55 °C;  

— high pressure, for a maximum working pressure of up to 1,0 MPa (10,0 bar) at 23 °C and up to 0,51 MPa (5,1 bar) at 55 °C;
FOR ISO STANDARD

— extra-high pressure, for a maximum working pressure of up to 1,55 MPa (15.5 bar) at 23 °C and up to 0.79 MPa (7.9 bar) at 55 °C.

This International Standard does not apply to products used for fire-fighting or the conveyance of drinking water.

6. **TBS/ MEDC 4 (6459)/ P3 ISO 16440:2016**

**Title:** Petroleum and natural gas industries -- Pipeline transportation systems - Design, construction and maintenance of steel cased pipelines.

**Scope:** This document specifies requirements, including corrosion protection, for the design, fabrication, installation and maintenance of steel-cased pipelines for pipeline transportation systems in the petroleum and natural gas industries in accordance with ISO 13623.

NOTE 1 Steel casings can be used for mechanical protection of pipelines at crossings, such as at roads and railways and the installation of a casing at a highway, railway, or other crossing can be required by the permitting agency or pipeline operator.

NOTE 2 This document does not imply that utilization of casings is mandatory or necessary.

NOTE 3 This document does not imply that cased crossings, whether electrically isolated or electrically shorted, contribute to corrosion of a carrier pipe within a cased crossing. However, cased crossings can adversely affect the integrity of the carrier pipe by shielding cathodic protection (CP) current to the carrier pipe or reducing the CP effectiveness on the carrier pipe in the vicinity of the casing. Their use is not recommended unless required by load considerations, unstable soil conditions, or when their use is dictated by sound engineering practices.

7. **TBS/ MEDC 4 (6460)/P3 ISO 16708:2006**

**Title:** Petroleum and natural gas industries -- Pipeline transportation systems - Reliability-based limit state methods.

**Scope:** This International Standard specifies the functional requirements and principles for design, operation and re-qualification of pipelines in the petroleum and natural gas industries using reliability-based limit state methods as permitted by ISO 13623. Reliability-based limit state methods provide a systematic way to predict pipeline safety in design and operation.

This International Standard supplements ISO 13623 and can be used in cases where ISO 13623 does not provide specific guidance and where limit states methods can be applied, such as, but not limited to,

— qualification of new concepts, e.g. when new technology is applied or for design scenarios where industry experience is limited,

— re-qualification of the pipeline due to a changed design basis, such as service-life extension, which can include reduced uncertainties due to improved integrity monitoring and operational experience,

— collapse under external pressure in deep water,

— extreme loads, such as seismic loads (e.g. at a fault crossing), ice loads (e.g. by impact from ice keels),

— situations where strain-based criteria can be appropriate.

This document applies to rigid metallic pipelines on-land and offshore used in the petroleum and natural gas industries.

**Title:** Plastics piping systems - Polyethylene (PE) pipes and fittings for water supply - Part 1 – General

**Scope:** This document specifies the general aspects of polyethylene (PE) compounds for the manufacture of pressure pipes and fittings (mains and service pipes) for buried or above ground applications, intended for the conveyance of:

- water for human consumption;
- raw water prior to treatment;
- drainage and sewerage under pressure;
- vacuum sewer systems;
- water for other purposes.

This document also specifies the test parameters and requirements for the test methods referred to in this document.

In conjunction with other parts of the ISO 4427 series, this document is applicable to PE pipes and fittings, their joints and to joints with components made of PE and other materials, intended to be used under the following conditions:

a) a maximum allowable operating pressure (PFA) up to and including 25 bar1;

b) an operating temperature of 20 °C as the reference temperature.

NOTE 1 For other operating temperatures, guidance is given in Annex A.

The ISO 4427 series covers a range of maximum allowable operating pressures and gives requirements concerning colours.

NOTE 2 It is the responsibility of the purchaser or specifier to make the appropriate selections from these aspects, taking into account their particular requirements and installation practices or codes.


**Title:** Plastics piping systems - Polyethylene (PE) pipes and fittings for water supply - Part 2 – Pipes

**Scope:** This document specifies the pipes made from polyethylene (PE) for buried or above ground applications, intended for the conveyance of:

- water for human consumption;
- raw water prior to treatment;
- drainage and sewerage under pressure;
- vacuum sewer systems;
- water for other purposes.

NOTE 1 The intended uses include sea outfalls, laid in water and pipes suspended below bridges.

Pipes complying with this document are not intended for the transport of water intended for human consumption in contaminated soils unless special consideration has been taken.
NOTE 2 For example, ISO 21004 provides an alternative solution for use in contaminated soils. See Reference [3] in the Bibliography.

This document specifies three types of pipe:

— PE pipes (outside diameter dn), including any identification stripes;

— PE pipes with co-extruded layers on either or both the outside and/or inside of the pipe (total outside diameter dn) where all layers have the same MRS rating;

— PE pipes (outside diameter dn) having a peelable and contiguous thermoplastics additional layer on the outside of the pipe (“coated pipe”).

This document also specifies the test parameters for the test methods referred to in this document.

In conjunction with the other parts of the ISO 4427 series, this document is applicable to PE pipes, their joints and to joints with components made of PE and other materials, intended to be used under the following conditions:

a) a maximum allowable operating pressure (PFA) up to and including 25 bar1;

b) an operating temperature of 20 °C as the reference temperature.

NOTE 3 For other operating temperatures, guidance is given in ISO 4427-1:2019, Annex A.

This document covers a range of maximum allowable operating pressures and gives requirements concerning colours.

NOTE 4 It is the responsibility of the purchaser or specifier to make the appropriate selections from these aspects, taking into account their particular requirements and installation practices or codes.


**Title:** Plastics piping systems - Polyethylene (PE) pipes and fittings for water supply - Part 3 – Fittings

**Scope:** This document specifies the fittings made from polyethylene (PE) for buried or above ground applications, intended for the conveyance of water for human consumption, raw water prior to treatment, drainage and sewerage under pressure, vacuum sewer systems, and water for other purposes.

NOTE 1 The intended uses include sea outfalls, laid in water and connection between pipes suspended below bridges.

This document also specifies the test parameters for the test methods referred to in this document.

In conjunction with the other parts of the ISO 4427 series, this document is applicable to PE fittings, to joints with components of PE or other materials, intended to be used under the following conditions:

a) a maximum allowable operating pressure (PFA) up to and including 25 bar1;

b) an operating temperature of 20 °C as the reference temperature.

NOTE 2 For other operating temperatures, guidance is given in ISO 4427-1:2019, Annex A.

This document covers a range of maximum allowable operating pressures and gives requirements concerning colours.
NOTE 3 It is the responsibility of the purchaser or specifier to make the appropriate selections from these aspects, taking into account their particular requirements and installation practices or codes.

This document is applicable to fittings of the following types:

1. fusion fittings;
   a. electrofusion fittings;
   b. spigot end fittings (for butt fusion using heated tools and electrofusion socket fusion);
   c. socket fusion fittings (see Annex A);
2. mechanical fittings;
   a. compression fittings;
   b. flanged fittings;
3. fabricated fittings (see Annex B).

11. TBS/ MEDC4 (6257) P3 ISO 4427 – 5: 2019

Title: Plastics piping systems - Polyethylene (PE) pipes and fittings for water supply - Part 5 – Fitness for purpose of the system

Scope: This document specifies the characteristics of the fitness for purpose of pipes and/or fittings assemblies made from polyethylene (PE) for buried or above ground applications, intended for the conveyance of water for human consumption, raw water prior to treatment, drainage and sewerage under pressure, vacuum sewer systems, and water for other purposes.

NOTE 1 The intended uses include sea outfalls, laid in water and pipes suspended below bridges.

NOTE 2 This document is intended to be only used by the product manufacturer to assess the performance of components according to ISO 4427-2 and/or ISO 4427-3 when joined together under normal and extreme conditions. It is not intended for on-site testing of pipe systems.

This document also specifies the test parameters for the test methods referred to in this document.

In conjunction with the other parts of the ISO 4427 series, this document is applicable to PE pipes, fittings, their joints and to joints with components of PE and other materials, intended to be used under the following conditions:

   a) a maximum allowable operating pressure (PFA) up to and including 25 bar1;
   b) an operating temperature of 20 °C as the reference temperature.

NOTE 3 For other operating temperatures, guidance is given in ISO 4427-1: 2019, Annex A. The ISO 4427 series covers a range of maximum allowable operating pressures and gives requirements concerning colours.

Title: Road vehicles — Vehicle identification number (VIN) — Content and structure

Scope: This International Standard specifies the content and structure of a vehicle identification number (VIN) in order to establish, on a world-wide basis, a uniform identification numbering system for road vehicles.

This International Standard applies to motor vehicles, towed vehicles, motorcycles and mopeds as defined in ISO 3833.


Title: Road vehicles — World manufacturer

Scope: This International Standard specifies the content and structure of an identifier in order to establish, on a world-wide basis, the identification of road vehicle manufacturers. The world manufacturer identifier (WMI) constitutes the first section of the vehicle identification number (VIN) described in ISO 3779.

This International Standard applies to motor vehicles, towed vehicles, motorcycles and mopeds as defined in ISO 3833.

14. TBS/ MEDC13 (6273) P3 ISO 16003: 2017

Title: Components for fire-extinguishing systems using gas — Requirements and test methods — Container valve assemblies and their actuators; selector valves and their actuators; nozzles; flexible and rigid connectors; and check valves and non-return valve.

Scope: This International Standard specifies requirements and describes test methods for the following components used in gaseous fire-extinguishing systems: container valve assemblies, which include container valve, actuator and, if applicable, a diptube; selector valves and their actuators; agent distribution nozzles; flexible connectors; and check and non-return valves.

Container valve assemblies are designed to control the extinguishant flow from the container to the distribution pipe work. They are normally in the closed position. The automatic control device triggers the actuator and the valve opens. Where applicable, the requirements contained in the test methods also apply to separate container valves.

The design of the nozzles influences the area coverage, the height limitations, the discharge rate and the flow rate.

This International Standard is applicable to check valves installed between container valve and manifold and non-return valves installed in pilot lines, except those valves that are tested in combination with non-electrical control devices. It is required that non-return and check valves allow the passage in the direction of flow and prevent flow in the reverse direction.

NOTE For the purpose of this International Standard, the pressure in megapascals (bars) means gauge pressure, unless otherwise indicated.
15. TBS/ MEDC13(6274) P3 / ISO 3008-1:2019

**Title**: Fire resistance tests — Door and shutter assemblies — Part 1: General requirements

**Scope**: This document, used in conjunction with ISO 834-1, specifies a method for determining the fire resistance of door and shutter assemblies designed primarily for installation within openings incorporated in vertical separating elements, such as

- hinged and pivoted doors,
- horizontally sliding and vertically sliding doors, including articulated sliding doors and sectional doors,
- steel single-skin folding shutters (un-insulated),
- other sliding, folding doors,
- tilting doors,
- rolling shutter doors,
- removable panels in walls,
- self-closing openable windows.

Requirements are included for mechanical pre-conditioning, e.g. “cycling” of door and shutter assemblies prior to the conduct of the fire-resistance test.


**Title**: Graphical symbols — Safety colors and safety signs — Registered safety signs

**Scope**: This document prescribes safety signs for the purposes of accident prevention, fire protection, health hazard information and emergency evacuation.

The shape and colour of each safety sign are according to ISO 3864-1 and the design of the graphical symbols is according to ISO 3864-3.

This document is applicable to all locations where safety issues related to people need to be addressed. However, it is not applicable to the signalling used for guiding rail, road, river, maritime and air traffic and, in general, to those sectors subject to a regulation which may differ with regard to certain points of this document and of the ISO 3864 series.

This document specifies the safety sign originals that can be scaled for reproduction and application purposes.

17. TBS/ MEDC13(6276) P3 / ISO 14520-8:2019

**Title**: Gaseous fire-extinguishing systems - Physical properties and system design - Part 8: HFC 125 extinguishant

**Scope**: This document contains specific requirements for gaseous fire-extinguishing systems, with respect to the HFC 125 extinguishant. It includes details of physical properties, specifications, usage and safety aspects.

This document is applicable to systems operating at nominal pressures of 25 bar and 42 bar, super pressurized with nitrogen. This does not preclude the use of other systems.

**Title:** Gaseous fire-extinguishing systems - Physical properties and system design -- Part 5: FK-5-1-12 extinguishant

**Scope:** This document contains specific requirements for gaseous fire-extinguishing systems, with respect to FK-5-1-12 extinguishant. It includes details of physical properties, specifications, usage and safety aspects.

This document is applicable only to systems operating at nominal pressures of 25 bar, 34.5 bar, 42 bar and 50 bar with nitrogen propellant. This does not preclude the use of other systems.

19. **TBS/ MEDC10 (6284) P3 ISO 5682-1:2017**

**Title:** Equipment for crop protection — Spraying equipment — Part 1: Test methods for sprayer nozzles

**Scope:** This document specifies test methods to assess the performance of sprayer nozzles with the exception of droplet characteristics. Applicable tests by nozzle type are described in an informative annex as a guide, but this is not required for use of this document.

20. **TBS/ MEDC10(6285) P3 ISO 5682-2:2017**

**Title:** Equipment for crop protection — Spraying equipment — Part 2: Test methods to assess the horizontal transverse distribution for hydraulic sprayers.

**Scope:** This document is applicable for sprayers intended to apply liquid over a horizontal surface.

This document specifies test methods to assess sprayed liquid horizontal transverse distribution. Methods are based on sprayed liquid volume measurement, nozzle flow rate measurement or nozzle tip pressure measurement.

This document does not cover aerial sprayers.

Hydraulic sprayers use a range of design features to deliver and control spray. The test methods provided in this document are all useful but don't give the same information. They are complementary. Some test methods are not suitable for all sprayer types. Applicable test methods are described in an informative annex.

21. **TBS/ MEDC10(6280) P3 ISO 7256/1: 1984**

**Title:** Sowing equipment - Test methods - Part 1: Single seed drills (precision drills)

**Scope:** This part of ISO 7256 specifies test methods for single seed drills (precision drills).

22. **TBS/ MEDC10 (6184) P3 ISO 22867: 2011**

**Title:** Forestry and gardening machinery — Vibration test code for portable handheld machines with internal combustion engine — Vibration at the handles

**Scope:** This International Standard specifies a vibration test code for determining, efficiently and under standardized conditions, the magnitude of vibration at the handles of portable hand-held, internal-combustion-engine-powered forest and garden machinery, including chain-saws (with the exception of high-handled chain-saws), brush-cutters, grass-trimmers, pole-mounted powered pruners, hedge-trimmers and garden-blowers.

Although the magnitudes measured are obtained in an artificial operation, they nevertheless give an indication of the values to be found in a real work situation.