DRAFT TANZANIA STANDARD

(Draft for comments only)

Coaxial communication cables Part 6: Sectional specification for CATV drop cables

TANZANIA BUREAU OF STANDARDS
1 National Foreword

This draft Tanzania Standard is being prepared by the Telecommunications and Information Technology Technical Committee, under the supervision of the Electrotechnical divisional standards committee (EDC)

This draft Tanzania Standard is an adoption of the International Standard IEC 61196-6:2021 Coaxial communication cables – Part 6: Sectional specification for CATV drop cables, Which has been prepared by the International Electrotechnical Commission

2 Terminology and conventions

Some terminologies and certain conventions are not identical with those used in Tanzania standards; attention is drawn especially to the following: -

1) The comma has been used as a decimal marker for metric dimensions. In Tanzania Standards, it is current practice to use “full point” on the baseline as the decimal marker.

2) Where the words “International Standard(s)” appear, referring to this standard they should read “Tanzania Standard(s)”.
INTERNATIONAL STANDARD

Coaxial communication cables –
Part 6: Sectional specification for CATV drop cables

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.120.10

ISBN 978-2-8322-4863-8

Warning! Make sure that you obtained this publication from an authorized distributor.
CONTENTS

FOREWORD .. 3

1 Scope ... 5

2 Normative references ... 5

3 Terms and definitions ... 7

4 Materials and cable construction .. 7

4.1 Cable construction ... 7

4.2 Inner conductor ... 7

4.2.1 Conductor material .. 7

4.2.2 Conductor construction ... 8

4.3 Dielectric ... 8

4.4 Outer conductor or screen ... 8

4.5 Sheath ... 8

4.6 Completed cable ... 9

5 Standard ratings and characteristics ... 9

6 Identification and marking .. 9

6.1 Cable identification .. 9

6.2 Cable marking .. 9

6.3 Labelling .. 9

7 Tests for completed cables .. 10

7.1 General .. 10

7.2 Electrical testing of the finished cable ... 10

7.2.1 Low-frequency and DC electrical measurements .. 10

7.2.2 High-frequency electrical and transmission measurements 11

7.3 Environmental testing of the finished cable .. 13

7.4 Tests for mechanical characteristics of the finished cable 14

7.5 Fire performance test methods .. 14

8 Quality assessment ... 15

9 Delivery and storage ... 15

10 Fire performance test methods (FFS) .. 15

Annex A (normative) Cable identification and marking ... 16

A.1 Cable identification ... 16

A.1.1 Type name ... 16

A.1.2 Variants ... 16

A.1.3 Screening classes ... 16

A.2 Cable marking ... 17

Bibliography .. 18

Table 1 – Low-frequency and DC electrical measurements 10

Table 2 – High-frequency electrical and transmission measurements 11

Table 3 – Environmental testing of the finished cable ... 13

Table 4 – Tests for mechanical characteristics of the finished cable 14

Table 5 – Fire performance test methods (FFS) ... 15
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This redline version of the official IEC Standard allows the user to identify the changes made to the previous edition IEC 61196-6:2009. A vertical bar appears in the margin wherever a change has been made. Additions are in green text, deletions are in strikethrough red text.
IEC 61196-6 has been prepared by subcommittee 46A: Coaxial cables, of IEC technical committee 46: Cables, wires, waveguides, RF connectors, RF and microwave passive components and accessories. It is an International Standard.

This second edition cancels and replaces the first edition published in 2009. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) extended scope,
b) revised sheath marking and labelling.

The text of this International Standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>46A/1498/FDIS</td>
<td>46A/1514/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

A list of all the parts in the IEC 61196 series, published under the general title *Coaxial communication cables*, can be found on the IEC website.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be:

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
COAXIAL COMMUNICATION CABLES –

Part 6: Sectional specification for CATV drop cables

1 Scope

This part of IEC 61196 applies to coaxial communications cables. It specifies the requirements for CATV drop cables for analogue and digital one and two way signal transmission, e.g. for cable networks for television signals, sound signals, interactive services, surveillance & control systems, and satellite television receiving systems according to the requirements of IEC 60728-1, IEC 60728-1-1, IEC 60728-101, IEC 60728-10, ISO/IEC 11801-1 and ISO/IEC 11801-4. This also includes the transmission of BCT signals provided by a CATV, MATV or SMATV cable network.

The operating frequency is from 5 MHz to 1 000 MHz or from 5 MHz to 3 000 MHz.

Operating temperature is between −40 °C and +70 °C.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60068-1:1988, Environmental testing – Part 1: General and guidance

IEC 60068-2-78, Environmental testing – Part 2-78: Tests – Test Cab: Damp heat, steady state

IEC 60096-0-1, Radio frequency cables – Part 0-1: Guidelines to the design of detail specifications – Coaxial cables

IEC 60811-605, Electric and optical fibre cables – Test methods for non-metallic materials – Part 605: Physical tests – Measurement of carbon black and/or mineral filler in polyethylene compounds

IEC 61196 -1:2005, Coaxial communication cables – Part 1: Generic specification – General, definitions and requirements

IEC 61196-1-1:2007, Coaxial communication cables – Part 1-1: Capability approval for coaxial cables

IEC 61196-1-102, Coaxial communication cables – Part 1-102: Electrical test methods – Test for insulation resistance of cable dielectric

IEC 61196-1-105, Coaxial communication cables – Part 1-105: Electrical test methods – Test for withstand voltage of cable dielectric

IEC 61196-1-106, Coaxial communication cables – Part 1-106: Electrical test methods – Test for withstand voltage of cable sheath

IEC 61196-1-112, Coaxial communication cables – Part 1-112: Electrical test methods – Test for return loss (uniformity of impedance)

IEC 61196-1-113, Coaxial communication cables – Part 1-113: Electrical test methods – Test for attenuation constant

IEC 61196-1-115, Coaxial communication cables – Part 1-115: Electrical test methods – Test for regularity of impedance (pulse/step function return loss)

IEC 61196-1-201, Coaxial communication cables – Part 1-201: Environmental test methods – Test for cold bend performance of cable

IEC 61196-1-203, Coaxial communication cables – Part 1-203: Environmental test methods – Test for water penetration of cable

IEC 61196-1-206, Coaxial communication cables – Part 1-206: Environmental test methods – Climatic sequence

IEC 61196-1-209, Coaxial communication cables – Part 1-209: Environmental test methods – Thermal cycling

IEC 61196-1-212, Coaxial communication cables – Part 1-212: Environmental test methods – UV stability

IEC 61196-1-301, Coaxial communication cables – Part 1-301: Mechanical test methods – Test for quality

IEC 61196-1-302, Coaxial communication cables – Part 1-302: Mechanical test methods – Test for eccentricity

IEC 61196-1-308, Coaxial communication cables – Part 1-308: Mechanical test methods – Test for tensile strength and elongation for copper-clad metals
IEC 61196-1:2005, Subclause 4.4.1 applies. The conductor material shall be stated in the relevant detail specification.
INTERNATIONAL STANDARD

Coaxial communication cables –
Part 6: Sectional specification for CATV drop cables
INTERNATIONAL STANDARD

Coaxial communication cables – Part 6: Sectional specification for CATV drop cables

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.120.10
ISBN 978-2-8322-1015-4

Warning! Make sure that you obtained this publication from an authorized distributor.

© Registered trademark of the International Electrotechnical Commission
CONTENTS

FOREWORD .. 3

1 Scope ... 5

2 Normative references ... 5

3 Terms and definitions ... 7

4 Materials and cable construction ... 7

 4.1 Cable construction .. 7

 4.2 Inner conductor .. 7

 4.2.1 Conductor material ... 7

 4.2.2 Conductor construction ... 7

 4.3 Dielectric ... 7

 4.4 Outer conductor or screen ... 8

 4.5 Sheath ... 8

 4.6 Completed cable .. 8

5 Standard ratings and characteristics ... 8

6 Identification and marking .. 9

 6.1 Cable identification ... 9

 6.2 Sheath marking ... 9

 6.3 Labelling .. 9

7 Tests for completed cables .. 10

 7.1 General .. 10

 7.2 Electrical testing of the finished cable ... 10

 7.2.1 Low-frequency and DC electrical measurements 10

 7.2.2 High-frequency electrical and transmission measurements 11

 7.3 Environmental testing of the finished cable ... 13

 7.4 Tests for mechanical characteristics of the finished cable 14

 7.5 Fire performance test methods ... 14

8 Quality assessment .. 15

9 Delivery and storage ... 15

10 Fire performance test methods (FFS) ... 15

Annex A (normative) Cable identification and marking 16

 A.1 Cable identification ... 16

 A.1.1 Type name ... 16

 A.1.2 Variants .. 16

 A.1.3 Screening classes .. 16

 A.2 Cable marking ... 17

Bibliography ... 18

Table 1 – Low-frequency and DC electrical measurements 10

Table 2 – High-frequency electrical and transmission measurements 11

Table 3 – Environmental testing of the finished cable ... 13

Table 4 – Tests for mechanical characteristics of the finished cable 14

Table 5 – Fire performance test methods (FFS) .. 15
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 61196-6 has been prepared by subcommittee 46A: Coaxial cables, of IEC technical committee 46: Cables, wires, waveguides, RF connectors, RF and microwave passive components and accessories. It is an International Standard.

This second edition cancels and replaces the first edition published in 2009. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) extended scope,
b) revised sheath marking and labelling.
The text of this International Standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>46A/1498/FDIS</td>
<td>46A/1514/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

A list of all the parts in the IEC 61196 series, published under the general title *Coaxial communication cables*, can be found on the IEC website.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.
COAXIAL COMMUNICATION CABLES –

Part 6: Sectional specification for CATV drop cables

1 Scope

This part of IEC 61196 applies to coaxial communications cables. It specifies the requirements for CATV drop cables for analogue and digital one and two way signal transmission, e.g. for cable networks for television signals, sound signals, interactive services, surveillance & control systems, and satellite television receiving systems according to the requirements of IEC 60728-1, IEC 60728-1-1, IEC 60728-101, IEC 60728-10, ISO/IEC 11801-1 and ISO/IEC 11801-4. This also includes the transmission of BCT signals provided by a CATV, MATV or SMATV cable network.

The operating frequency is from 5 MHz to 1 000 MHz or from 5 MHz to 3 000 MHz.

Operating temperature is between −40 °C and +70 °C.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60068-1:2013, Environmental testing – Part 1: General and guidance

IEC 60068-2-78, Environmental testing – Part 2-78: Tests – Test Cab: Damp heat, steady state

IEC 60096-0-1, Radio frequency cables – Part 0-1: Guidelines to the design of detail specifications – Coaxial cables

IEC 60811-605, Electric and optical fibre cables – Test methods for non-metallic materials – Part 605: Physical tests – Measurement of carbon black and/or mineral filler in polyethylene compounds

IEC 61196-1:2005, Coaxial communication cables – Part 1: Generic specification – General, definitions and requirements

IEC 61196-1-1, Coaxial communication cables – Part 1-1: Capability approval for coaxial cables

IEC 61196-1-102, Coaxial communication cables – Part 1-102: Electrical test methods – Test for insulation resistance of cable dielectric

IEC 61196-1-105, Coaxial communication cables – Part 1-105: Electrical test methods – Test for withstand voltage of cable dielectric
IEC 61196-1-106, Coaxial communication cables – Part 1-106: Electrical test methods – Test for withstand voltage of cable sheath

IEC 61196-1-112, Coaxial communication cables – Part 1-112: Electrical test methods – Test for return loss (uniformity of impedance)

IEC 61196-1-113, Coaxial communication cables – Part 1-113: Electrical test methods – Test for attenuation constant

IEC 61196-1-115, Coaxial communication cables – Part 1-115: Electrical test methods – Test for regularity of impedance (pulse/step function return loss)

IEC 61196-1-201, Coaxial communication cables – Part 1-201: Environmental test methods – Test for cold bend performance of cable

IEC 61196-1-203, Coaxial communication cables – Part 1-203: Environmental test methods – Test for water penetration of cable

IEC 61196-1-206, Coaxial communication cables – Part 1-206: Environmental test methods – Climatic sequence

IEC 61196-1-209, Coaxial communication cables – Part 1-209: Environmental test methods – Thermal cycling

IEC 61196-1-212, Coaxial communication cables – Part 1-212: Environmental test methods – UV stability

IEC 61196-1-301, Coaxial communication cables – Part 1-301: Mechanical test methods – Test for ovality

IEC 61196-1-302, Coaxial communication cables – Part 1-302: Mechanical test methods – Test for eccentricity

IEC 61196-1-308, Coaxial communication cables – Part 1-308: Mechanical test methods – Test for tensile strength and elongation for copper-clad metals

IEC 61196-1-310, Coaxial communication cables – Part 1-310: Mechanical test methods – Test for torsion characteristics of copper-clad metals

IEC 61196-1-313, Coaxial communication cables – Part 1-313: Mechanical test methods – Adhesion of dielectric and sheath

IEC 61196-1-316, Coaxial communication cables – Part 1-316: Mechanical test methods – Test of maximum pulling force of cable

IEC 61196-1-317, Coaxial communication cables – Part 1-317: Mechanical test methods – Test for crush resistance of cable
3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 61196-1 apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at http://www.iso.org/obp

4 Materials and cable construction

4.1 Cable construction

The cable construction shall be in accordance with 4.2 to 4.6 of this document and the requirements stated in the relevant detail specification.

4.2 Inner conductor

4.2.1 Conductor material

IEC 61196-1: 2005, Subclause 4.4.1 applies. The conductor material shall be stated in the relevant detail specification.

4.2.2 Conductor construction

The conductor shall consist of a single wire or tube.

IEC 61196-1:2005, Subclause 4.4 applies.

The nominal diameter of the inner conductor and tolerance shall be stated in the relevant detail specification.

The maximum allowable tolerance is ± 0.03 mm.

4.3 Dielectric

IEC 61196-1:2005, Subclause 4.5 applies.